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Algebraic disturbances, a non-modal component of the linear perturbation fields, are 
ihown to be an essential feature of stratified shear flows. We find that they must be 
included even in situations where the modes form a complete set, for such completeness 
does not extend to the space of these ill-behaved functions. 

If the Richardson number Ri is less than 4 anywhere in the flow, the algebraic 
disturbances are very generally instabilities of the system, growing without limit as 
time t+co. 

Both of these results are in direct contradiction with the currently accepted view- 
point. We examine the previous research in this field to locate the source of this 
discrepancy. 

The algebraic instabilities are not form preserving, and display extreme distortion 
as they evolve. I n  the asymptotic limit they appear as quasi-horizontal flow fields, 
with a vertical ‘wavelength’ that  tends to zero. As such, they must be expected to 
induce secondary shear instabilities and cascade into motions of smaller (horizontal) 
scale. 

1. Introduction 
I n  the many geophysical problems that involve questions about the stability of 

stratified shear flows, recourse is often made to the conventional linearized hydro- 
dynamic stability theory. This approach examines modes with a time dependence of 
the form cut. If eigenvalues with a real part of c greater than zero can be found, the 
flow is said to be unsbable while, if no such c exists, the flow is declared to be stable 
against infinitesimal perturbations. This ‘ansatz’ (as Case (19604 calls it) is accept- 
able only if all other solutions of the linearized equations decay, or are stationary, in 
time. To date, the only ‘other’ solutions that have been identified are continua of 
singular functions that exist in a flow with non-zero mean shear. Eliassen, Hoiland & 
Riis (1953) and Case (1960a, b )  laid the foundations forstudyingthesesolutionsthrough 
examination of flows with constant shear profiles. Both sets of authors concluded that 
perturbations composed of the singular solutions are stable : amplitudes are either 
stationary or decaying in the long-time limit. As was first pointed out by Miles (1961), 
these analyses are easily generalized to arbitrary shear flows without a change in the 
conclusions. Consequently the ‘ ansatz ’ is now generally accepted and stability 
investigations concentrate on the search for exponentially growing modes. 

I n  this paper we re-examine the behaviour of the (so-called) algebraic solutions, 
and conclude, contrary to the earlier work, that they produce instabilities that grow 
in time if the local Richardson number Ri falls below $ anywhere in the flow (but is 
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not everywhere zero). Moreover, such solutions, stable or otherwise, always contribute 
to shear-flow disturbances. The analysis begins with an examination of flows that 
have constant shear and constant Brunt Vaisala frequency. The approach used is a 
somewhat simplified version of Case’s (1960b) definitive formulation of the initial- 
value problem. The final stages differ from those presented by Case; here the simplified 
formulation makes obvious why a t  one critical step we depart radically from previous 
conclusions. 

The analysis is generalized to arbitrary shear flows, and we conclude that algebraic 
instabilities should be a general feature of flows with Ri < $ somewhere in the profile. 
The explicit initial-value formulation shows why the approach used by Eliassen et al. 
failed to reveal these instabilities. It also shows that the algebraic solutions are in 
no sense dependent for their existence on any lack of completeness of the normal 
modes of the system: algebraic solutions are a consequence of the singular nature of 
the shear-flow equations and must be included in solutions of the initial-value problem 
even if a ‘complete’ set of normal modes can also be identified. 

Apart from a very special class of profiles (which may not even exist), the necessary 
and sufficient condition for algebraic instabilities in a stratified shear flow is that Ri 
should be less than somewhere in the flow (but not everywhere zero). 

2. Formulation 
The problem is posed as the time development for t 2 0 of perturbations imposed 

(or specified) at time t = 0 in the two space dimensions x and z of a given mean flow. 
The co-ordinate z is aligned with the direction opposite to that of the gravitational 
field g and the mean state is homogeneous in x. At all times t 2 0 the governing 
equations are p DV/Dt = - V p  + pg (Euler’s equation), (2.1) 

0. V = 0 (incompressibility) (2.2) 

and Dp/Dt = 0 (mass conservation). (2.3) 
The mean state is given as 

Departures from the mean state 

v = %L‘(z), ;b(z), p ( z )  with d p ( z ) / d z  = - p ( z ) g .  

p1 = p - p ,  p ,  = p - p ,  v, = %u+&w = v-v  
are assumed to be of sufficiently small amplitude that (2.1)- -(2.3) may be linearized 
in them. At time t = 0 these departures are taken to be well-behaved functions 
po,  p,, u, and ?uo of x and z. The set (2.1142.3) is Iinearized in the perturbations and a 
Laplace transform applied to the time dependence. A Fourier transform is then taken 
over the x co-ordinate and the resulting equations are manipulated to yield a single 
differential equation in the transforms of w. The Boussinesq approximation is intro- 
duced, i.e. all terms involving djo/dz are dropped unless they are multiplied by the 
factor g. 

Using the transform notation 

8 , ( k ,  z )  = dx e i k z  wo(x, z ) ,  Smm 
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we arrive a t  the equation 

where 

is the Brunt-Vaisala frequency squared and R = ( - is - k F ) .  

3. Idealized shear flow 
Before considering the general problem it is instructive to examine the special case 

of unbounded, stratified, linear shear flow. Solutions can be obtained in terms of 
standard functions, and a comparison made with the previous studies of this idealized 
system. The results are also relevant to the problem of small-scale disturbances 
introduced into a flow that changes only over much larger scales. 

If N 2  is a constant and the mean velocity field is a linear shear flow, so that 

N2 zz B2, I‘ = UZ, 

(2.6) reduces to 

it20 + d2@ gFn 
- y - is/@ a( - y - isla) 

+a(-y- is /a)  1 31 dy = P,,(y/k), (3.1) 

where y = kz. For definiteness we consider the case a > 0. 
The solution of (3.1) may be written in terms of a Green’s function involving the 

Bessel functions I*iy and K ,  (see appendix). The conditions that &-+ 0 as y - +  & 00 

with lim G(y,y’) = 0. 
U - + f  Q) 

It follows from the properties of K,(y) that 

1 (y + is/a)iK,(y + isla) ( - y’ - is /a) t  K,( - y’ - is/a) for y > y’, ( 3 . 3 ~ )  

{ ( y - is/a)g K,( - y - i s la)  (y‘ + is/a)h K,.(y’ + i s /a)  for y’ > y, (3.3 6 )  

where ~2 = 4 -B2/a2 (3.4) 

G(Y,Y’) = -; 

and B2/a2 is the Richardson number. 
The solution of (3.1) is thus 

and inverting the transforms gives 

(3.5) 

rmiV dsest$“ dy’G(y,y’)P0(y’/k). (3.6) 
27ri - i m + y  m 

1-2 
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The form of w for large t 
The asymptotic limit as t -+ m of w may be conveniently extracted from (3.6) by first 
performing the Laplace inversion. Both G ( y ,  y‘) and Po(y ‘ /k )  are analytic functions 
in the right half of the complex s plane, so the inversion contour may be moved to 
within an infinitesimal distance 6 of the imaginary s axis. Then as t becomes large the 
factor eat in (3.6) becomes a rapidly oscillating function on the path of integration, and 
significant contributions to the integral arise only from those regions of s where other 
factors in the integrand have a correspondingly rapid variation. The only such regions 
are those about the zeros of y’ + is/a and y + i s / a ,  where G and Po have singularities, 
and the leading contribution (highest power o f t )  will come from the most singular 
of these. 

The function G ( y ,  y’) &(y’ /k )  is replaced by its series expansion about the most 
singular region: the forms (3.1) of P and (3.3) of G show that the zero of y‘+ i s / a  
provides the highest singularity, and that the stratification term (with the explicit 
factor g) dominates. 

Integrating the expanded form overs, the asymptotic series becomes (see appendix) 

x (Clt”+C2t-”)+&( -y, -y‘, -€) (C3t”+C4t-Y))+O(t--)*Y). (3.7) 

(3.8) 

C,, . . . , C, are constants and 

&(y, y’, 4 = (y - Y’ + i s /a) t  K,(y - 9’ + q a )  - 9% 

where 8 is the Heaviside function. 
and those for 

which Ri < a. In the former case v is imaginary, while in the latter v is real. The ensuing 
development will be confined to the case of v real. The case v imaginary may be 
treated in a parallel fashion; its behaviour is easily deduced from the formulae obtained 
with v real. 

The integration over y’ is now treated using the same approach. The exponential 
factor ensures that a t  large t the significant region of the integrand is that around the 
zero of y - y‘ + i s / a ,  where Q(y, y’, e )  varies rapidly. Expanding the functions Q and 
p^/p as power series about this point, and integrating over y’, gives (see appendix) 

It is convenient to distinguish between systems for which Ri >, 

i m + y  
dy‘lim - 1 dsestG(y,  y’) ~ o ( y ’ / k )  sw - w t+ m 2nt - i m + y  

This form gives the asymptotic behaviour of the perturbation in k space. Discussion 
of stability is usually made at  this stage, rather than after a further inversion to x space, 
to avoid the complexities introduced by dispersion. However, the previous investiga- 
tion by Case chose to examine stability in the x space representation. Then applying 
the k space inversion of (3.6) to the result (3.9) provides (remembering that y = kz)  

00 

lim w(x, z, t )  = - cg t2,-1 1 dk exp [ik(azt - x)] D0(y/k) .  
t - t  m P ( Y / ~ )  271 - m  

(3.10) 
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Case (I960b) treats this inversion, which is slightly more complex in his formulation, 
as yet another asymptotic limit. He argues that, if the initial perturbation is of bounded 

lim dkeikzatjj0(x, k )  N t-1 (3.11) 
extent in x, one has s t+ m 

and hence lim w(x,  z,  t )  N t2”-2pO(x, 2 ) .  
t - t  m 

(3.12) 

While this is correct mathematically, it is completely misleading physically. Returning 
to (3.10), this inversion can be obtained exactly: 

or lim w(x  + Ut, z, t )  N t2v-1pO(x, 2) .  
t-+ m 

(3.14) 

The cause of the different time dependences in (3.12) and (3.14) is clear. The disturb- 
ance a t  height z is advected through the chosen frame of reference with the mean flow 
velocity a U ( z )  = *ax. Consequently an observer a t  a fixed (x, x )  point located in the 
region of the initial disturbance sees an additional ‘decay’ as the disturbance is 
advected away from him. Within the system as a whole, however, there is no associated 
fall-off; the amplitude may be recovered by observing the appropriate downstream 
location. 

Nevertheless, since all real Y are less than 0.5 for finite shears, the time dependence 
in (3.14) corresponds to a decay in amplitude. This does not imply stability of the 
system, for consider the other scalar fields associated with the perturbation, namely 
(a )  the horizontal velocity component u, (b)  the density departure pl,  ( c )  the streamline 
displacement 7 and ( d )  the pressure field p,. 

(a )  The horizontaZJlow component. The horizontal velocity field is obtained from the 
Fourier components of the field w through the incompressibility equation (2.2). For 
the Fourier component e-ikx, 

u(k ,  z, t )  = - ik-l aw(k, z, t)/az. (3.15) 

So from the k component of (3.10) 

The Fourier inversion follows as before, yielding the leading term 

u ( x  + azt, 2, t )  N t2”po(x, z ) / p ( z ) .  (3.17) 

(b) ,  ( c )  The density and streamline displacements. These two functions are similar and 
The horizontal flow in the perturbation grows without limit. 

may be treated together. The streamline displacement 7 obeys 

DylDt = w (3.18) 

while the equation of mass conservation (2.3) gives 

Dp,/Dt = - w djildz. (3.19) 

The development of p1 will be given. 
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The form (3.13) gives 

lim Dp,/Dt - - (djj /dz) t 2 ” - l p o ( ~  - azt, z ) ,  

lim pl(x, z, t )  N - (dp /dz )  t2”p0(x - azt, z ) ,  

t + m  

from which 
t - t  m 

or lim p1(z + azt, z ,  t )  - - (dp /dz )  po(x, z )  t2”, 
t - t  m 

(3.20) 

(3.21) 

(3.22) 

so p1 also grows without limit. The displacement 7 has the same behaviour. 
It is interesting to  check that the result (3.22) is also obtained through direct 

calculation using the asymptotic procedures. Applying the Laplace and Fourier 
transforms to (3.19) gives 

dF 8 Po A=-(-)  dz -+r is1 z s 1 .  

The Green’s function formalism (3.5) for 8 is then applied, whence 

(3.23) 

(3.24) 

Applying the inverse transforms gives 

pl(x, z,  t )  = po(x - at, z )  + - d k  e-ikx 
2n Sm -a 

x i/imCU dsest(-) - d p  -jm 1 dy’G(y,y’)P(y’). (3.25) 2ni i m + y  dz  iSZ - m  

The asymptotic evaluation of the triple integral proceeds exactly as in the develop- 
ment (3.6)--(3.14). The Laplace inversion gives a result that is essentially identical 
with (3.7). At the next step, namely the integration over the source co-ordinate y f ,  
the additional factor 51 in the denominator [the explicit SZ seen in (3.23)] comes into 
effect and contributes to  the final time dependence t2”. 

( d )  Thepressure j e ld .  From the x component of (2.1) it is readily found that 

t2w-1 (3.26) 

and this field component decays a t  large times. 
Detailed discussion of these results will be postponed until after examination of the 

general shear-flow problem, which shows essentially the same characteristics. At this 
point we simply note that the algebraic disturbances are a form of instability for flows 
with Ri < a. 

4. The general shear-flow problem 
The previous analysis depended entirely on the leading terms of the Frobenius 

expansions about the singularities of the governing equation. It should be apparent 
that  this will also be true in the general problem where the background flow and the 
Brunt-Vaisalii frequency are arbitrary functions of z. Also, i t  is known that the 
Taylor--Goldstein equation [the homogeneous form of (1.6)] yields essentially the 
same leading terms in a Frobenius expansion as does the equation obtained without 
the Boussinesq approximation; or for that matter the equation for subsonic per- 
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turbations in a compressible fluid. The only differences involve slowly varying multi- 
plicative factors and, in the compressible system, a reformulation of N 2 .  Dispersion 
changes as the approximations are reduced, but we wish to examine stability in k 
space, where dispersion is not a consideration. Consequently (2 .6 )  contains all the 
essential elements of more general formulations. 

The boundary conditions for the problem are implicit in the Green's function. All 
those commonly used, viz. rigid upper or lower boundaries, outer regions where the 
solutions must obey a radiation or evanescence condition and orthodox combinations 
of these, can be included in a single formulation. The problem then is to find a solution 
of (2 .6)  subject to specification of the two general homogeneous boundary conditicjns 

a, Q + b, dS/dz = 0 a t  (or above) some upper value of z, 

a,& + b,dQ/dz = 0 a t  (or below) some lower value of z. 

(4 .1 )  

(4 .2 )  

Let p(k, z, s) and #(k, z, s) be the solutions of the homogeneous form of (2 .6 )  that 
respectively obey these upper and lower boundary conditions. The required solution 

i m + y  

(4 .3 )  w(z, 2, t )  = - dk  e- 4kx - 1 dsest dz'G(z, z ' )  Po(,'). 
2ni - - i m + y  -a 

is then 

The Green's function 
- $"(z) #+/)/ W for z > z', ( 4 . 4 a )  

- @(z')  $z(z)/ W for z < z', (4 .4b )  

where W is the Wronskian of 
We now examine the singularities of the product G(z, z ' )  p0(z')  in the complex s 

plane. They are of two possible sorts. First, W may be zero for certain values si of s. 
This happens if, and only if, $u and $l  are identical to within a multiplicative constant. 
In this case the homogeneous form of (2 .6 )  plus the boundary conditions has an 
eigensolution $i with eigenvalue si. Such eigenvalues are expected to form a de- 
numerable discrete set (which may be empty). Complex eigenvalues occur in complex- 
conjugate pairs, while the neutral modes have eigenvalues on the imaginary s axis. 
These zeros of W give regular singularities of G. 

The second type of expected singularity comes from a zero of Q .Po has regular 
singularities, but the functions @' and $z have singularities of fractional order a t  such 
points. For any choice of k, z or z' there will exist one (pure imaginary) value of s for 
which Q is zero. The functional form of G(z,  z ' )  p0(z')  near this value is found from 
the general Frobenius expansions as follows. Let z, be a singular point of the equation 

G(z,z') = 

with $ I .  

i2  = -is - k r ( Z ) )  (4 .6 )  

with -is - kl'(zc) = 0. (4 .7 )  

The series expansion about the singularity is 

$(z)  = A ( Z - Z c ) t - ' [ l + U l ( ~ - Z , ) +  ...I+ B(Z-Z, )*+"[~+~~(Z-Z, )+ ...I, (4 .8)  

where (4 .9)  
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This is commonly used as a representation of over a small z domain about the 
singularity. However, by continuity it provides a representation over a small s 
domain with z fixed. The parameters A ,  B, a,, . . ., b,, . . ., x, and v are then not constants, 
but continuous functions of the independent variable. 

The locus of the singular point (4.7) may be inverted to give the s space relation 

2, = f(s). (4.10) 

The (fixed) field point z is a singularity for s =s(z) ,  whence 

z - 2, = f(Z) -f(S), 

= -[df ‘as]&-S)+ ..., 
(4.11) 

(4.12) 

v (s) = v ( S )  + [ av /’ds], (S - S )  . . . , (4.13) 

(4.14) A(s)  = A(S) + [aA/’ds], (s -3 )  
and so forth. 

Noting that 

(S -S)+~  = (s-S)+~,  where a: = v(S)+ [av,’as], (s-s) ... 
= (s - S)k’@ exp [In (s - S) [{ k [dv/dsl ,  (s - 2). . .>I 
= ( s  - s)*v@) {l 5 [iiv, O S ] ~  ( s  - L o )  In (s - S). . .>, (4.15) 

the s space expansion of q5 becomes 

q5(z,s) = P(S) ( S - s p - y q l  +p,(s-S)+p&-S)+ ...I 
+ &(s) ( s  - ~ ) i + v @ )  [ 1 + ql(s - S )  In (s - S )  + pB(s - S )  + . . .]. (4.16) 

To define the fractional powers in s space a cut running along the imaginary s axis 
to s = -ioc is introduced at s = s (Z is always pure imaginary). The location of all 
singularities and cuts is shown symbolically in figure 1. 

Asymptotic form of the solution 

The procedure used to obtain the long-time limit of (4.3) parallels that used previously 
for the idealized profile. The Laplace inversion is first performed. The s contour 
- i c ~  + y + ilx + y lies to the right of all singularities in the s plane, and is shown as 
the line I? in figure 1 .  I n  the usual way, i t  may be displaced through the right-hand 
half-plane until it encounters the cut. Then the upper half of the contour may be 
swung through the left-hand half-plane until it lies against the other side of the cut. 
This results (figure 1 b )  in an infinite contour I“ following the cut, plus a sequence of 
closed contours encircling the isolated singularities. The cut may be displaced an 
infinitesimal distance from the axis to avoid singularities such as sk (figure 1)  that  
lie there. 

The isolated singularities arise from the existence of modes (eigensolutions) of the 
system, and the contours around them provide their excitation amplitudes. They are 
not the part of the solution of interest in this paper. The contour along the cut provides 
the algebraic disturbances, which we wish to examine. Thus we need to evaluate 

1 
I ( z ,  z ’ )  = Ir, ds eStG(z, z ’ )  $,,(z’). (4.17) 
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FIGURE 1.  The s plane map. (a )  r is the inversion contour for the Laplace transformation. ai, s:, 
sj, sk are eigenvalues of the flow system. 3 is the singular point that gives rise to the algebraic 
disturbances, and the origin of the cut. (6) I” is the component of the translated contour on 
which integration is performed to evaluate the algebraic disturbances. 

In the limit t+co the exponential factor becomes very rapidly oscillating on I”. 
Significant contributions come only from the neighbourhood of singularities of the 
integrand, i.e. from the region about S .  The function G(z ,  2 ‘ )  F ( d )  is replaced by a series 
expansion about B. Since this is the only region that, contributes in the asymptotic 
limit, the integrat’ion may be performed with this representation over the entire I” 
contour. 

The integrations on I” are directly related to standard Fourier transformations: 

and Sr,dsest(s-S)-pln(s-S)  N eSttp--1(A -ln(t)). 

In the asymptotic limit the leading term of (4.17) comes from the most singular 
term in the expansion: 

{ O ( Z  - 2 ’ )  @(k, 2 , S )  q(3) (s -S)*-”@) 
t +  co 

+ O ( d  - z ) ~ z ( k , x , S ) P u ( S ) } .  (4.19) 

Here 8 is the Heaviside function and 4‘ and I; correspond to values of P in (4.16) for 
q3 = and $ = respectively. The situation for I;@) or Pu(S) equal to zero will be 
examined later. 

Now consider the 2‘ integration in (4.3) applied to this asymptotic form I ( z , z ‘ ) .  
Both B and v in (4.19) are functions of 2 ’ :  explicitly, 2 = ikU(z’) .  The exponential 
factor est = eikV(z’)t is a rapidly oscillating function of z’ as t -+ 00 provided that 

dU(z‘)/dz’ $. 0. 
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(Any finite intervals of z' for which dU(z')/dz'  = 0 must be considered separately. 
They will not be discussed here although it should be apparent later that such regions 
will not support local algebraic instabilities.) As with the Laplace inversion, the 
rapidly oscillating exponential guarantees that integration over regions of z' where the 
rest of the integrand varies slowly contributes zero in the asymptotic limit. Only 
regions near singularities need be considered. Again, these may be identified as zeros 
of W ( k , s )  and singularities of #P and $1. The former identify (neutral) modes of the 
homogeneous problem, and must be excluded from consideration because the previous 
contour of integration was deliberately distorted to exclude such points. This leaves 
the singularities of the functions qP and $ l ,  which occur at (and only at) the critical 
levels identified by iB+ k U ( z )  = 0. 

If U is a monotonic function of z', there is only one such singularity for any field 
point z. That is, when we held z and z' fixed to perform the s integration, the value of 
U(z ' )  determinedg, and no other point z' in the field can select the same value of S. Now, 
the integration over z t  must provide a value of 3 that makes z a critical level, and only 
one point on z', namely zt  = z, can do this. 

If U is not monotonic, however, there are (continua of) points z where the flow 
speed U ( z )  is equal to the flow speed a t  other levels zl, z2, ... $. z .  Each of these levels 
gives the same value of S ,  so when we integrate over z' the functions p l ( ( z , S ( z ' ) )  will 
have singularities a t  z' = zl, z2, . . . as well as at  z' = z. 

We label all the points zI that contribute a singularity to (4.19) as 

1 
2' = z = zo, 

z' = (zl, z2, .. ., ZN) > 2, 

z' = (2-1,z-2, ..., 2-41) < z, 

z I :  U(Z,) = U(z ) .  

(4.20) 

The integration over z' is most conveniently performed by making a transformation 
to the variable S .  The functions #P and $1 are expanded [as in (4.10)-(4.16)] about 
each singular region z I ,  after which each term is integrated over the entire domain. 
The procedure is essentially identical with the one previously used for the s space 
integration. The leading contribution from each singularity is selected, and we find 

where 

and 
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5. Behaviour of the solution 
Using (4.21) in (4.3) gives 

00 N 
lim w(x, z, t )  = - 1 dk C exp [ik( P(zI)  t - x]@,,(zr) C,(k, 2,s) 

t - t m  2n --m I = - M  

x C2(k, zI,B) tY(Z)+Y(Z~)-l. (5.1) 

The right-hand side of (5.1) is the first term of a series whose subsequent members 
have lower powers oft. 

First consider the behaviour of a particular Fourier component k. Five essential 
points may be noted. 

(i) In  the long-time limit the disturbance at  height z derives from initial disturbances 
at  that height and from other heights zI a t  which the mean flow speed matches that at 
z. No other regions of the fluid contribute to this leading term. 

(ii) The response is frozen into the local fluid. That is, it is convected at  the local 
fluid velocity rr(zI) = C ( x ) .  

(iii) The time evolution of the disturbance can be written as the product of two 
algebraic terms, t”(Z)--* and t W -  4. The first depends only on the local properties at  the 
field point z, the second only on the local properties at the contributing source point 
zI of the initial disturbance. Each term depends explicitly on the stability of the flow 
as represented by the local Richardson number. 

(iv) The amplitude factor Cl(z) C2(zI) also displays the joint contributions of field- 
point and source-point properties. However, the functions C are not determined by 
the local properties of the system alone, but depend rather on the entire flow profile 
and the boundary conditions. The other terms on the right of (5.1) are indeed local, 
and require knowledge of only the initial disturbance and point values of C, N2 and 
d t ’ /dz .  But it myst not be concluded that, for instance, the second derivative of the 
velocity field plays no role in the problem. On the contrary, d21’/dz2 appears explicitly 
in the homogeneous form of (2.6); hence when qP and # are traced from the boundaries 
through the fluid to the critical level, the second derivative of V plays a part in 
determining these functions, and hence the coefficients in the Frobenius expansions. 
These coefficients in turn determine C, and C2. If we were interested in the magnitude 
of the perturbation at  long times, rather than just the general information that the 
initial disturbance dies out or in some part grows without limit, we should have to 
specify the entire field and explicitly evaluate the C’s. 

(v) A factor C ( k ,  z, S )  is zero if, and only if, the coefficient of the most singular term 
in the corresponding Frobenius expansion is zero. We expect that for each lc component 
there may be a finite number of points in the z, S domain for which this could happen, 
but we do not anticipate continua of such points. However, the theory of fluid stability 
has a long history of providing the unexpected. So until it  can be rigorously demon- 
strated otherwise, we must acknowledge the possibility that for some profiles C could 
be zero for a finite range of all the parameters. 

Nevertheless, in the most commonly posed problem, a zero of C is isolated in the 
following sense. Consider the system in which the domain of interest is defined by 
rigid upper and lower plane boundaries. Suppose that for given values of s and k (and 
hence a particular value z = z, for the height of a singular point) the Frobenius 
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expansion about z, of the function is found to be 

qP(z-z,) = B(z -z , ) f+u  (1 + al(z - 2,). . .). (5.2) 

That is [see (4.8)], the series in ( x - z , ) f  -” is absent and C(z,,S, k) is zero here. The 
analytic continuation of (5.2) to the upper boundary satisfies the condition 

p ( Z  = L)  = 0. 

Since we are dealing with a second-order differential equation, this is an isolated zero 
with respect to 2. If we consider the contiguous problem in which the upper boundary 
is placed a t  L 6, the series (5.2) no longer satisfies the boundary condition. $u must 
then also contain a non-zero component of the series ( z  - zc)4-” (1 + . . .) and C(z,, s, k) 
is now non-zero. 

Similarly, we could also consider contiguous problems in which slight. variations of 
the functions I’ or N 2  eliminate a zero of C. 

For these reasons we suspect that, if stability analysis is viewed as investigating 
types of flow characterized by, but not confined to, a particular realization, zeros of 
C are essentially isolated and expression (5.1) is valid. 

Nature of the algebraic disturbances 

Equation (5.1) closely resembles (3 . i4)  and its treatment parallels that given in 

In  a stably stratified medium, v is real and less than 4 where Ri < a, and is ima- 
(3.14)- .( 3.26). 

ginary otherwise. Consequently 
lim w(x, z, t )  = 0. 
t + m  

(5.3) 

Vsing the divergence equation (2.2) for the velocity, mass conservation (2.3) and the 
displacement relation (3.19), the following relations are established from (5.1): 

d I’ldz, 
x p ^ , ( ~ , )  C,(X) C2(zI)  t Y @ ) + ” ( Z ~ )  ( - ) (dp’dz) ( ~ ( 2 )  + ~ ( 2 1 ) )  ’, (5.4) 1 + V ( Z I ) )  l-  

These fields all grow without limit if, and only if, the Richardson number a t  either 
the field point z or some contributing source point zI is less than &. To the extent that 
our work is correct, this recovers Dyson’s hypothesis regarding the stability of stratified 
flows. In  a flow with a height-dependent Richardson number that in some intervals 
falls below the critical value of 4, the fastest-growing algebraic disturbances will be 
those introduced at the location of the minimum of the Richardson number. Here the 
growth rate will be t2”m=, vmax = [( & - Ri)*Imax. 

The x component of Euler’s equation (2.1) shows that the pressure field decays in 
the same manner as w. 

If the flow contains a region that is unstable statically ( N 2  < 0), v is greater than $ 
there and all field components may increase without limit as t +a. As such regions 
are known a priori to be unstable, the only information derived here is that the 
algebraic instabilities contribute to the evolution of the flow. 
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FIGVRE 2. The mean flow profile V&) and its advective effect on the algebraic disturbances. At 
time t = 0 a density disturbance with sinusoidal variation in x and no structure on z is introduced. 
Heavy shading locates the density maxima. At time T later, advection has displaced the align- 
ment, so that the density variation is now arstrong function of z. 

At first sight it seems strange that the various field components show different forms 
in the asymptotic limit, but this just reflects the nature of the singularity from which 
they are derived. It is known that in the modal analysis of the shear-flow problem 
the unstable modes must have a critical level (Howard 1961). At this level modes on 
the neutral stability boundary have infinite horizontal flow speed, density perturba- 
tion and particle displacement, while the pressure and vertical Aow fields are zero. 
This is precisely the asymptotic form found here for the non-modal components. 

The conventional normal mode instabilities are wavelike, form-preserving per- 
turbations. I n  principle this allows them to be readily identified in laboratory and 
field experiments. By contrast, the algebraic disturbances undergo continual distortion, 
and exhibit no strong k space selectivity to distinguish themselves from broad band 
background noise. 

The distortion results from the height-dependent propagation term 

exp [ik( rT(z) t - x)] 

seen in (5.1) and (5.4). Since growth of the disturbance depends on the shear of [ ' (z ) ,  
there is always vertical variation of the propagation (essentially an ndvection) rate. 
This is shown schematically in figure 2. At time t = 0 an initial disturbance is intro- 
duced into the shear flow. It is quasi sinusoidal in the horizontal direction, and is 
confined and relatively free of structure in the z direction. After a time interval T, 
the differential advection has introduced a sinusoid-like variation in the z direction. 
From (5.3) and (5.4) i t  is seen that as T + 3c the local vertical wavelength tends to zero 
and the velocity field tends to a horizontal flow of infinite amplitude. Obviously this 
limit will never be achieved. Secondary instabilities and other nonlinear effects will 
come into play a t  earlier times. A quasi-horizontal flow with strong vertical shear 
should locally support conventional shear instabilities (Hazel 1972, especially $4).  
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The lack of any marked k space selectivity in the algebraic system is a notable 
departure from the behaviour of modal instabilities. The latter assume scales that are 
determined by the extent of the strong shear regions (Miles & Howard 1964) or the 
spacing between the shear region and a solid boundary (Lalas, Einaudi & Fu& 1976; 
Lalas & Einaudi 1976). But the algebraic instabilities derive their scales only from the 
initial disturbances. In the nocturnal inversion of the earth’s boundary layer, for 
instance, the modes are constrained to horizontal wavelengths of many hundreds of 
metres. Algebraic disturbances could exist with scales of (say) only a few metres. 

This analysis of an isolated initial disturbance gives the impression that the algebraic 
instability should show up as a long narrow tilted ledge of activity. But in an actiye 
medium, such as the atmosphere, disturbances are more likely to be introduced 
continuously both in space and time. Thus, to the extent that ‘initial’ disturbances 
fill most of the fluid volume, the disturbances at  later times will be found throughout 
regions of flow with mean Ri < a. 

Although they result from linearized theory only, the algebraic disturbances behave 
more like turbulence than waves. In turbulence one expects convection with the local 
mean flow (Taylor’s hypothesis), loss of form and a degeneration to smaller scales 
(cascading), and an absence of dominant scales imposed by the mean conditions. 

6. Comparison with previous results ; the completeness problem 
We have already indicated [(3.12) et seq.] why our conclusions differ from those of 

Case. Essentially, Case formulated a wave-packet problem and examined the long- 
time behaviour of fields at  the original location of the packet. Because, in general, the 
packet propagates (or advects) away from its initial position, the fields there tend to 
zero as t -+ 00, even if the amplitude of the packet grows with time. This calls to mind 
the famous admonition ‘keep your eyes on the doughnut and not on the hole’. 

Eliassen et al. examined various types of shear-flow problem. They concluded that 
in stably stratified systems with Ri < 2 the algebraic disturbances always decay in 
the long-time limit. Moreover for some systems they identified a complete set of 
neutrally stable non-singular modes and concluded that in these cases there could 
consequently be no solutions of the algebraic type. Both of these points conflict with 
our findings and must be examined. 

First we consider the decay/growth difference. Eliassen et al. do not explicitly 
formulate the initial-value problem, but work from an assumed representation 
(equations (6.1) and (6.2) in their paper). This can be compared with the Laplace 
approach through (4 .3 )  et seq. It is very quickly found that their form is incorrect in 
that their amplitudes A ,  and A ,  are not, as assumed, functions of 5 (their notation) 
alone, but functions of both 6 and t .  The reader may verify that 

lim A ,  = tv+a it(<) etc. 
t+  a 

Singular problems often display additional factors of t beyond the dependence 
associated with the non-singular system. The most familiar example is the simple 
harmonic oscillator driven at  resonance. The Laplace formulation deals with such 
situations in a straightforward way. 
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The coexistence of algebraic disturbances with a complete set of neutral modes is 
also related to the singular nature of the system. I n  the examination of the s space 
properties of the Green’s function [(4.3) et seq.], we identified isolated singularities 
corresponding to modes of the homogeneous equation, and the singularities of fractional 
order coming from the critical level of the equation. The latter give the algebraic 
disturbances. But suppose that the eigenmodes form a complete set. Then one might 
seek to express any initial disturbance in terms of this set, and there would appear to 
be no possible role for additional solutions. In  fact, the original motivation for seeking 
algebraic disturbances came from the realization that certain systems, notably plane 
Couette flow, lacked a complete set of eigenmodes. Now, the Laplace formulation 
provides a solution of which the algebraic response is an essential part, without 
regard to eigenmode completeness or lack of it. 

All semblance of contradiction disappears when it is recognized that completeness 
is always qualified by the order of continuity of the function space. The modes identified 
by Eliassen et al. ( 3  3) are continuous, and have continuous first derivatives. The 
algebraic disturbances are discontinuous and have unbounded variation a t  the critical 
level. They are not representable as a series in the eigenmodes. Note, of course, that 
we are discussing a fixed component k of the Fourier representation, not the real 
x, z space functions, where physical considerations require boundedness. This reasoning 
is confirmed by comparing the results of Eliassen et al. with those of Booker & 
Bretherton (1967). The latter authors considered the fate of a wave train (periodic in 
x and t )  propagating in a fluid with constant shear, constant stratification and strong 
stability (Ri > a). They found that in the vicinity of the critical level (where the 
horizontal phase speed matched the mean flow speed) the ‘vertical wavelength’ of 
the fields tended to zero; the horizontal velocity field, displacement and density 
perturbation tended to infinity, and the Reynolds stress was discontinuous. Their 
conclusion was that the greater part of the wave energy was being trapped in a 
vanishingly small height interval on the wave-incident side of the critical level. This 
system can be re-posed without significantly affecting the conclusions as follows. 

Instead of a wave train, let the incident disturbance be a wave packet in k space 
whose amplitude a t  time t = 0 approaches zero a t  great distances above and below 
the critical-level interval. At arbitrarily greater distances insert rigid horizontal 
boundaries. The perturbation fields are evanescent in these outer regions (cf. the 
homogeneous form of (3 .1)  for y ++a), so the boundaries are of no physical im- 
portance. The Booker & Bretherton work tells us that as t - t m  most of the initial 
wave packet will disappear into the critical-level regions. In  particular, the fields of 
any k component will have all the properties deduced in their wave-train research. 

But the system we have described, a constant shear flow with constant strong 
stability confined between two rigid boundaries, is identical with the one discussed 
in 9 3 of Eliassen et al. There it was argued that the system has a complete set of well- 
behaved eigensolutions for any component. (The horizontal phase velocity of each of 
these solutions lies outside the limits of the background flow, so there are no critical 
levels.) It was concluded that: ‘Assuming, without being able to prove it, that the 
set of eigenfunctions is complete, it follows that the system is [neutrally] stable. . . 
because the general solution may be interpreted as a superposition of [neutrally] stable 
waves.’ We have inserted ‘neutrally’ here because the authors use the term stable to 
indicate the absence of instability, not, in this case, time decay, 
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We do not dispute the assumption of completeness in the conventional sense, 
relating to well-behaved continuous functions. But it is apparent that these eigen- 
solutions do not allow a description of the ill-behaved Booker & Bretherton wave 
train, any more than they include the algebraic disturbances. 

7. Generalization to three space dimensions 
Th/e entire previous development has been confined to two space dimensions x and 

z. Generalization to the full three-dimensional space (x, y, z )  follows exactly the 
procedure established for the standard modal theory of shear-flow instabilities. 

(7.1) 
Let 

U ( 4  = *%(4 +QU&) 
be the mean flow field in a three-dimensional system that is strat,ified in z. We follow 
closely the development and formalism of $ 2  but take Fourier transformations of 
perturbation fields in two co-ordinates x and y. Thus in place of (2.4) we define 

a ( k z , k y , z , s )  = d x I m  dyexp[i(k,x+k,y)] dte-stw(x,y,z,t) (7.2) 

with similar generalizations of other Fourier transforms. This results in the following 
equation governing 8:  

- W  /om 

where k = ak,+Qk,,  k2 = k.k .  (7.41, (7.5) 

(7.6) 

Define U, and uo, k through the projection operations 

k . U = kUk, k . uo = kuo, k, 

and observe that (7.3) is simply a particular form of (2.6) with ( U ,  uo) set equal to 
(uk ,  U0,k). This is no more than the physically expectedresult that the three-dimensional 
wave problem reduces precisely to the two-dimensional problem defined by the plane 
of propagation of the wave. 

The stability properties for any k in the spectrum are now obtained from the 
results of $ 9  2-6 with the identification of the relevant functions U, and U0,k. Note in 
particular that the Richardson number must also be generalized, 

Rik = N2(d&/dz)-', (7.7) 

and that the growth or decay of a component of the initial disturbance depends 
strongly on its alignment with the vorticity of the local mean flow. 

The author wishes to thank Dr D. K. Lilly, Dr W. H. Hooke and Dr K. S. Gage 
€or their advice and encouragement, and also unidentified referees for helpful sug- 
gestions. 
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Appendix. Algebraic disturbances in an idealized shear 

Bessel functions of fractional order 

is the canonical form of Bessel’s equation of complex argument. I ts  solutions are 

9 = y-*I*,(y), (A 2) 

(A 3) I , =  c , ,om!r (v+m+i)  
(4YY+2m 

(Watson 1944, 4 3.7). 
In  the limit y+cc the .I*,, can be resolved into components with exponentially 

growing and exponentially decaying parts. I n  dealing with (3.1) we shall require the 
boundary condition that perturbations decay a t  large distances from source regions, 
so it is natural to use the function 

K,(Y) = +Pr(I,(y) - U y ) ) / s i n  v7r (A 4) 

since lim K,(y) = (7r/2y)* e-g. 
Y-+W 

From Watson [1944, 3 3.71, result (18) and 3 7.23, result (2)] it can be seen that there 
are no solutions of (A 1) that are bounded a t  both y = + x. Consequently the homo- 
geneous form of (3.1) has no eigenmodes anywhere in the complex s plane. It is also 
useful to note that K, and I, require specification of the branch of y that is to be used. 
In  this work it is aIways understood that this is done through a cut along the negative 
real axis of bhe complex y plane, so - 7r < arg y < 7r. This ensures that in later mani- 
pulations the forms used are properly defined continuous solutions. 

The Wronskian of {K,(y), I,(y)} will be needed to set up the Green’s functions. It 
is given in Watson [ 1944, 9 3.7 1,  result (1 9)]. 

Explicit evaluation of the solution in the idealized shearJEow 

In  the main text we gave (3.6), 

the Green’s function (3.3), 

(y + is,’a)* K,(y + is,’a) ( - y’ - is ’a)$ K,( - y’ - is  ’a) for y > y‘, 

( - y - is,’a)* K,( - y - is, a )  (y‘ + is/~)$ K,(y’ + is,’a) for y’ > y, 
G(Y, y’) = -- (A 7a)  

(A 7 b )  
where v2 = t-B2/a2, 

the source term (2.6), P,(Z) = k2 t A+ i: ;*:)’ - 3 
and indicated the steps required to obtain the final result (3.9). The details of these 
steps will now be given. 
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We begin with the s space integration. Equation (A 8) and the comment following 
(A 5) show that the functions are analytic in the right-hand half-plane, so the contour 
can be moved to be beside the imaginary s axis (y + 6 ) .  Thus 

-!- rm+‘ dsest(B(y - y’) (y + is/a)t ( - y’ - is/a)t K,(y - is/a) 
2n2 - im +. E 

where B is the Heaviside function. As t -+ oc the rapidly oscillating exponential ensures 
a contribution of zero from intervals where the rest of the integrand varies smoothly. 
Only those intervals about singularities of the function give something that survives 
in this limit. This is evaluated by expanding functions as their singular series and 
performing the integration for each term. Successive terms provide successively lower 
powers of t ,  so the asymptotic limit is obtained from the leading, most singular, term 
of the series. Thus 

1 + same expression with y + - y, y’ -+ - y’, i 3 ein i 

O(y’ - y)  (y’ - y - is ,  U)* Ku(y’ - y - i s /a)  - - - 9Po(Y’) exp (iy’at) 
2a2p(y’) sin (nv) 

+ same expression with y -+ - y, y‘ + - y’, i + e-iT i 

which is the explicit expression represented by (3.7). 

instability, so that v is real and only the terms with 
The next step is to integrate over y’. We assume weak stability (Ri c a), or static 

need be carried. Then 

x {O(y’ - y) (y’ - y - ie/a)4 K,(y’ - y’ - i s /a)  aQ+v 

+ same expression with y 3 - y, y’ 3 - y’, i + e-in i}. (A 11) 

Again, the exponential factor reduces the integration to the regions about singu- 
1arit.ies. The only such interval is that around the zero of y’ - y, and the leading term 
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in the series representation gives 

19 

which is the result presented in (3.9). 
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